Why clean construction doesn't equal costly construction

Join us at **11am PT/2pm ET on May 21** as one of Canada's leading climate think tanks is joined by experts in the field to offer informed insight on why clean construction doesn't have to mean costly construction.

RYLEY PICKEN

Policy analyst, Treasury Board of Canada's Centre for Greening Government

AUDRINA LIM

Director, sustainable construction, Chandos Construction

JULIETTE COOK

Co-founder, Ha/f Climate Design

JANA ELBRECHT

Senior policy advisor, Clean Energy Canada

MARK ZACHARIAS

Special advisor, Clean Energy Canada

Building Toward Low Cost and Carbon

Webinar May 2025

Jana Elbrecht, Senior Policy Advisor

Embodied carbon

- Building out housing & infrastructure could lock in hundreds of megatonnes of emissions by 2030
- **Embodied carbon** = emissions from construction, materials we use to build
- Material industries (steel, cement) are heavy emitters

Source: CAGBC (2022). Embodied Carbon: A Primer for Buildings in Canada.¹⁰

Buy Clean

- Buy Clean = Governments buying clean construction materials & design
- Incentivizing the market to move to clean
- In Canada, public construction accounts for 32% of the cement and concrete, and 29% of construction steel

Studying the cost implications of reducing embodied carbon

Studying two of the main strategies for reducing the emissions embodied in buildings:

- The materials we build with "like-for-like" swaps for concrete, structural steel, rebar, insulation and drywall
- 2) **Optimizing design for low carbon and cost** Case studies showcasing design interventions that can reduce

Research approach

- Cost is a common concern for Buy Clean policies
- Analysis based on case studies
- Material swaps: like-for-like
 - Costing by Chandos Construction
- Design: how can we build differently to save cost and carbon
 - Research consortium led by Ha/f Climate Designs
- Interviews with experts

Studying two of the main strategies for reducing the emissions embodied in buildings:

- The materials we build with "like-for-like" swaps for concrete, structural steel, rebar, insulation and drywall
- Optimizing design for low carbon and cost Case studies showcasing design interventions that can reduce

Material swap results

Material swap results

Emissions reductions available at market rates Cost premiums, if any, came to less than \$3,000 in most projects, a rounding error for multi-million dollar

construction projects

Costs fall well within the variances the industry already deals with on a daily basis

Results

Studying two of the main strategies for reducing the emissions embodied in buildings:

- 1) **The materials we build with** "like-for-like" swaps for concrete, structural steel, rebar, insulation and drywall
- 2) **Optimizing design for low carbon and cost** Case studies showcasing design interventions that can reduce

Low-rise design case study

Material savings:

Flattening facade saves:

- Steel framing (0.03 m³ per unit)
- Wood panels (0.1 m³ per unit)
- Carbon-intensive spray-foam and XPS insulation products

Basement structure saves:

 12.7 m³ cast-in-place concrete (replaced by additional 10.9 m² of brick cladding)

Mid-rise design case study: re-massing

CLEAN ENERGY CANADA

12

Mid-rise design case study: window-wall systems

CLEAN ENERGY CANADA

13

High-rise design case study: re-massing

High-rise design case study: envelope

glass, brick, copper panels, and aluminum by similar shares

Reimagining balconies

Photos, clockwise from upper left: Lacaton + Vassal, Transformation of 530 dwellings (Philippe Ruault), Hans Kollhof, Piraeus (Kollhof + Pols), BDPQ in Canadian Interiors (Quadrangle), Alvaro Siza Vieira + Peter Brinkert, Wohnhaus Schlesisches Tor (Esra Ackan), Hans Kollhof, Piraeus (Miriam Palmer).

How materials and design interact

- Savings best achieved through a combination of material choice and design
- Lower-carbon materials available at market rates
- But design savings can make room for near-zero materials even if these come at a premium

Beyond Material Costs

• Schedule impacts

• Efficient design is fast as well as clean

Cost of measuring carbon

• Government assistance on data has helped

• Operational vs. embodied carbon tradeoffs

• Need to take a lifecycle approach

• Expertise & project planning

- No major problems for construction crews
- Early planning & communication is key, especially with concerns around risk assumption

Urban design guidelines and building codes

- Prescriptive requirements on parking, floor plate sizes and setbacks can prevent low-carbon design options
- Centre outcomes instead

Recommendations for policymakers

Implement Buy Clean policies with both material-specific and whole-building requirements

Ensure Buy Clean requirements are **predictable**, **performance-based**, **and ramp up over time**

Build flexibility into material-specific requirements to account for variable markets, e.g. exempt a project if a certain premium is exceeded (2% of the structure budget)

Re-evaluate building codes, zoning, and urban design guidelines to unlock lower-carbon design opportunities

Provide financial support for data development (EPDs)

Provide capacity building and implementation guidance

19

Recommendations for project managers

Take a carbon budgeting approach to projects: emissions as a metric of success, provide time and mandate for project partners to think about the most accessible, low-cost solutions to reduce embodied carbon

Engage all project partners early on, from designers and structural engineers to the general contractor, to avoid material waste, optimize designs, and plan for the effective implementation of low-carbon materials

🖞 CLEAN ENERGY CANADA

Encourage creativity in design: may also mean allocating more of the budget to improved design in order to save on budget for materials

Questions?

Each Monday we publish the Clean Energy Review, a free weekly digest of must-read climate and clean energy stories from across Canada and around the world.

Contact:

Jana Elbrecht

jana@cleanenergycanada.org 437-324-9323

SUBSCRIBE | cleanenergycanada.org/review

@cleanenergycanada.org

VISIT | cleanenergycanada.org